Molecular Indicators of Genetic Diversity

Utility at local and regional scales

Mark Bagley Research Biologist

Building a scientific foundation for sound environmental decisions

What?
Why?
How?
Examples

Building a scientific foundation for sound environmental decisions

What?
Why?
How?
Examples

Building a scientific foundation for sound environmental decisions

Genetic Diversity

- Variation in the heritable differences of measurable traits that exists among individuals within a species.
 - Genetic diversity within populations
 - Genetic diversity among populations
- Examples: eye color, height, blood type, HIV resistance

Building a scientific foundation for sound environmental decisions

Molecular Population Genetic Approach

Building a scientific foundation for sound environmental decisions

Forces that act on genetic diversity

Building a scientific foundation for sound environmental decisions

Why?
How?
Examples

Building a scientific foundation for sound environmental decisions

THE TREE OF LIFE

Building a scientific foundation for sound environmental decisions

 Genetic diversity is a fundamental component of biodiversity

 It defines a fundamental unit of ecological assessment

Biodiversity

Building a scientific foundation for sound environmental decisions

What is the appropriate scale of assessment?

Watershed

Building a scientific foundation for sound environmental decisions

What is the appropriate scale of assessment?

Building a scientific foundation for sound environmental decisions

What is the appropriate scale of assessment?

Resource Population

Building a scientific foundation for sound environmental decisions

What is the appropriate scale of assessment?

Resource Population

Building a scientific foundation for sound environmental decisions

Correlations between Genetic Diversity and Contaminant Exposure

Known Stressors	Molecular Marker	Taxa	References
Mercury, other metals	Allozyme	Shrimp, Fish, Insects, Amphipods, Molluscs	Nevo <i>et al.</i> , 1984, Benton <i>et al.</i> , 1994, Heagler <i>et al.</i> , 1993, Keklak <i>et al.</i> , 1994, Roark and Brown, 1996, Diamond <i>et al.</i> , 1989, Mulvey <i>et al.</i> , 1995, Tatara <i>et al.</i> , 1999, Ben-Shlomo and Nevo,1988, Lavie and Nevo, 1982, 1986b, Benton and Guttman, 1992a,b, Chagnon and Guttman, 1989, Schlueter <i>et al.</i> , 1995, 1997, 2000, Duan <i>et al.</i> , 2000a, Moraga <i>et al.</i> , 2002, Larno <i>et al.</i> , 2001
Acidity, [AI]	Allozyme	Fish, Amphipod	Kopp <i>et al.</i> , 1992, Duan <i>et al.</i> , 2000a
Arsenate	Allozyme	Fish	Newman <i>et al.</i> , 1989
Pesticides	Allozyme	Fish, Bivalve	Hughes <i>et al.</i> , 1991, Brown Sullivan and Lydy, 1999, Tanguy <i>et al.</i> , 1999
PAH (fluoranthene)	Allozyme	Fish, Amphipod	Schlueter, et al., 2000, Duan et al., 2000b, Larno et al., 2001
Radionuclides	Allozyme, RAPD	Fish	Theodorakis and Shugart, 1997, 1998
Overall water quality, complex effluents	Allozyme, CYP1A, Sequence, MtDNA, RAPD	Fish, Copepod, Crayfish, Mussel, Barnacle	Gillespie and Guttman, 1989, 1993, Foré <i>et al.</i> , 1995a,b, Heithaus and Laushman, 1997, Roy <i>et al.</i> , 1996, Murdoch and Hebert, 1994, Street and Montagna, 1996, Nadig <i>et al.</i> , 1998, Krane <i>et al.</i> , 1999, Ma <i>et al.</i> , 2000, Roark <i>et al.</i> , 2001.

Building a scientific foundation for sound environmental decisions

Correlations between Genetic Diversity and Fitness

Fitness Endpoint	Mol. marker	Taxon	Reference
Local population extinction	Allozyme, microsatellite	Butterfly	Saccheri et al., 1998
Lifetime breeding success	Microsatellite	Red deer	Slate et al., 2000
Colony growth and survival	Allozyme	Ant	Cole and Wiernsasz, 1999
Fertility, hatching rate	Microsatellite	Prarie chicken	Westemeir et al., 1998; Bouzat et al., 1998
Mortality, growth, fecundity, developmental stability	Allozyme	Topminnow	Quattro and Vrijenhoek, 1989
Developmental stability	mtDNA, microsatellites	Elephant Seal	Hoelzel et al., 2002
Male reproductive success	Allozyme	Butterflies (2 species)	Carter and Watt, 1988
Male reproductive success	Allozyme	Gastropod	Rolan-Alvarez et al., 1995
Birth wt., neonatal survival	Microsatellite	Seal	Coltman et al., 1998

Building a scientific foundation for sound environmental decisions

Predictable Stress-Response-Measure Relationship

Building a scientific foundation for sound environmental decisions

Building a scientific foundation for sound environmental decisions

Prospective and Retrospective Indicator

PAST PRESENT FUTURE

- Population size variability
- Population connectivity

- Vulnerability of resource
- 'Importance' of resource

Assay

Building a scientific foundation for sound environmental decisions

Nofziger

National Wildlife

"Maybe we'd better leave this one alone,"

Building a scientific foundation for sound environmental decisions

Why? - summary

- Genetic diversity is a fundamental component of biodiversity
- Stressors affect genetic diversity in predictable ways (ecological indicator)
- Genetic diversity limits potential responses to future stressors (sustainability indicator)
- Understanding of genetic diversity patterns and population structure enhances the value and interpretation of other ecological assessment data

Building a scientific foundation for sound environmental decisions

What?
Why?
How?
Examples

Building a scientific foundation for sound environmental decisions

DNA fingerprints

Microsatellites

DNA Sequences

Building a scientific foundation for sound environmental decisions

High technology may require coordination with specialized labs

Building a scientific foundation for sound environmental decisions

What?
Why?
How?
Examples

Building a scientific foundation for sound environmental decisions

Population genetics in the EPA

- Biotechnology Risk- Resistance development in pests targeted by Bt toxins, effects on non-target insects
- Invasive Species- sourcetracking, introgressive hybridization, and invasion dynamics
- Monitoring- Genetic taxonomy and enumeration of cryptic invertebrate samples in stream, lake and ballast samples
- Landscape Genetics- integration of landscape and genetic information into population models
- Ecological Assessment-Watershed and regional analysis of fish and invertebrate populations

Building a scientific foundation for sound environmental decisions

Examples of Ecological Assessments

I. Within watershed

II. Several watersheds

III. Regional assessment

Building a scientific foundation for sound environmental decisions

I. Temporal analysis of population sizes and migration rates for a stream minnow in a small urban watershed

Goals:

- Determine whether population genetic structure exists within a single watershed
- Determine whether local effective population sizes and immigration rates within a watershed are related to habitat quality

Photo courtesy of the Ohio
Department of Natural Resources

Building a scientific foundation for sound environmental decisions

Mill Creek Watershed, Cincinnati, OH

Building a scientific foundation for sound environmental decisions

Genetic Analysis

- 4 mainstem, 3
 tributary, and one
 'control' site sampled
 in 2001-2002
- 4 mainstem sites also sampled in 1994-1995
- All samples genotyped at 10 microsatellite loci

Building a scientific foundation for sound environmental decisions

Hierarchical analysis of genetic structure

Variance component	d.f.	Proportion of genetic variance	Р
watersheds	1	1.17%	0.12
sites within Mill Creek	6	0.59%	0.00
years within sites	5	0.13%	0.21
Within sites	782	98.23%	

Building a scientific foundation for sound environmental decisions

Estimates of local effective sizes and immigration rates

Site	N _e (95% CI)	m (95% CI)
MC1	57 (42-85)	0.57 (0.43-0.74)
MC2	12 (7-20)	1.00 (0.67-1.00)
МС3	44 (31-71)	0.59 (0.41-0.87)
MC5	86 (47-116)	1.00 (0.69-1.00)

Source-sink dynamics?

Building a scientific foundation for sound environmental decisions

II. Genetics of Creek Chubs in a Mining-Impacted Region

Goals:

- •Assess the relationship between USGS hydrologic units and genetic structure for creek chubs.
- Assess relationship between genetic diversity and measures of ecological condition

Semotilus atromaculatus

Photo courtesy of Ohio Dept. Natural Resources

Building a scientific foundation for sound environmental decisions

Study Sites

- 10 sample sites
- Part of EMAP-MAIA
- Agricultural-mining
- Wadeable streams

Genetic Analysis

- 10-28 fish per site
- mtDNA sequences
- AFLP fingerprints
- Assess genetic differences within and among sites

Building a scientific foundation for sound environmental decisions

Genetic Structure - Nuclear DNA

Building a scientific foundation for sound environmental decisions

Principal Components Analysis to Classify Environmental Variation

Principal component	Environmental variation explained	Variables
1 (Geochemistry)	37.4%	Conductivity, aluminum, calcium, chloride, potassium, magnesium, sodium, sulfate
2 (N/P/C)	24.3%	Nitrate, total nitrogen, total phosphorus, organic carbon
3 (Latitudinal clines)	14.1%	Latitude, elevation, channel slope, silica, zinc
4 (Spatial scale)	11.8%	Watershed area, stream width, stream depth
5 (pH-Ammonium)	6.7%	pH, Ammonium
6 (Substrate condition)	6.4%	Pebble size, embeddedness, percent riffle

Building a scientific foundation for sound environmental decisions

Stepwise multiple regression – nuclear DNA diversity

PCA Factor	partial R ²	model R ²	F value	Pr > F
PCA 3 (Latitudinal clines)	0.4328	0.4328	6.10	0.0387
PCA 2 (N/P/C)	0.3489	0.7917	12.06	0.0104
PCA 5 (pH/Ammonium)	0.1841	0.9758	45.60	0.0005

98% of the differences in genetic diversity within populations explained by geographic and environmental factors

Building a scientific foundation for sound environmental decisions

III. Regional profile of fish genetic diversity in Eastern Cornbelt Plains Ecoregion

Goals:

- Assess the relationship between HUCs and genetic structure for central stonerollers.
- Assess relationship between genetic diversity and ecological condition
- Ultimately, perform a multispecies assessment across much of the eastern USA

Building a scientific foundation for sound environmental decisions

Study sites

- 91 wadeable streams in ECBP
- Part of Regional EMAP study (probability-based sampling
- Intensive ecological site characterization

Genetic analysis

- RAPD fingerprints
- 3-10 stonerollers collected per site
- Assess genetic differences within and among sites

Building a scientific foundation for sound environmental decisions

Multidimensional Scaling

Building a scientific foundation for sound environmental decisions

5 genetic groups

- More differentiation among southern watersheds
- Groupings related to watershed boundaries- but not exactly
- Fundamental units for ecological analysis?

Building a scientific foundation for sound environmental decisions

Genetic Diversity within Genetic Groups

Building a scientific foundation for sound environmental decisions

Multivariate analysis of differences in genetic diversity

"Exposure" variables

- Qualitative Habitat Evaluation Index
- BAP (µg/mg protein)
- NAPH (µg/mg protein)
- EROD (pmol/min/mg protein)
- Impacted- Urban
- Impacted –Agriculture
- Impacted- Riparian
- Impacted –Channelization

Geography and Scale variables

- Ave. Sampling Depth
- Latitude
- Longitude
- Stream Order (1 − 3)
- Watershed Area
- Elevation
- Major Genetic Group

"Effects" variables

- No. Fish (per 300 m)
- Wt. Fish (kg/ 300 m)
- No. Fish species
- Shannon Diversity Index
- Index of Well Being
- Index of Biotic Integrity

Building a scientific foundation for sound environmental decisions

Final model following stepwise elimination of least significant effects

Source	D.F	Mean	F	Prob.
		Square		
Impact factor – Urban	1	5.369	11.2	0.001
Impact factor – Riparian	1	4.882	10.2	0.002
Impact factor – Channelization	1	2.452	5.1	0.027
Major Genetic Group	4	6.311	13.1	< 0.001
Depth (covariate)	1	1.974	4.1	0.046

 $R^2=0.53$

Take-home Messages

- Understanding population structure is key to understanding risks to biological resources
- Population genetic methodologies are effective tools for evaluating population structure at various scales and may now begin to tell us about source-sink dynamics
- Population-level responses to environmental change are reflected in genetic measurements
- Genetic diversity affects population vulnerability.
 The strength of this relationship still needs much more research.

Building a scientific foundation for sound environmental decisions

For detailed information see:

Building a scientific foundation for sound environmental decisions

Acknowledgements

- US EPA: Suzanne Christ, Susan Franson, Eric Waits, Tom Wessendarp, Annette Roth, Tammy Goyke, Greg Toth
- Ohio EPA
- Sobran: Tony Leonard, Manju Garg, Ana Braam, Jared Smith, Richard Converse, Paul Weaver